A metal detector employing static discrimination. Within the scope of the invention is a two-frequency method and apparatus for discriminating between metal objects and ground. Also within the scope of the invention is a three-frequency method and apparatus for discriminating between ferrous and non-ferrous metal objects. The methods and apparatus do not require movement of the search head of the metal detector.
FIG 4
METAL DETECTOR EMPLOYING STATIC DISCRIMINATION

REFERENCE TO RELATED APPLICATIONS

[0001] This is a continuation-in-part of U.S. Ser. No. 10/074,349, filed Feb. 11, 2002.

FIELD OF THE INVENTION

[0002] The present invention relates generally to a metal detector employing static discrimination between metal objects and ground, and between ferrous and non-ferrous metal objects.

BACKGROUND OF THE INVENTION

[0003] Metal detectors are popularly used by hobbyists and collectors to search for buried or otherwise hidden metal objects of value or particular interest, such as coins, jewelry, and artifacts of historical significance. The metal detectors typically employ a transmit coil through which current flows, the current establishing time-varying magnetic fields that induce eddy currents in metal objects, and interact with any magnetic permeability of the metal object. These effects are detected in a receive coil, and are used to identify the metal objects.

[0004] In addition to metal objects of interest, the ground itself typically contains metallic compounds, particularly compounds containing iron. The iron compounds in particular have a relatively high magnetic permeability that often masks the response of the detector to the metal objects in the ground. It is a problem in the metal detector art to eliminate all the ferrous mineral signals in the target volume of ground while retaining sufficient information to identify the metal objects.

[0005] The ground also may be primarily electrically conductive as opposed to magnetically permeable or ferritic. For example, beach sand contains salt water. For this type of ground signals detected by the receive coil may be indicative of the conductivity of the ground rather than the metal objects. For either ferritic or conductive ground, it is necessary to minimize or eliminate the effect of the ground on the received signals, and this is a problem in the art.

[0006] It may be noted that, traditionally, "induction balance," "frequency domain" or "continuous wave" metal detectors employ a sinusoidal interrogating signal at a specific frequency. However, even where the interrogating signal is not sinusoidal, the signal is often Fourier analyzed into specific frequency components. The response therefore has a magnitude and phase that are in general altered from the magnitude and phase of the original signal as a result of the (complex) impedance of the target.

[0007] The impedance of the target has a real part that produces a (vector) component of the response that is in-phase with the interrogating frequency, and a so-called imaginary part that produces another component of the response that is in-quadrature, or 90 degrees out of phase with the interrogation frequency. It may be noted that the real component of a vector is often identified in engineering and mathematics with the horizontal "x" axis of a standard Cartesian coordinate system, while the imaginary component is identified with the vertical "y" axis. However, in the metal detector art, metal detector responses are sometimes graphed so that the real part of the response is plotted on a vertical "y" axis that represents zero phase shift, with a horizontal "x" axis depicting negative and positive phase deviations from the "y" axis. This scheme is used herein.

[0008] The real, or "x" component of a given frequency specific response vector represents the effect of the conductivity of all of the material contributing to the response at the specific frequency, while the imaginary, or "Y" component represents the effect at the frequency of the reactance of this material. For non-ferrous metal materials and salt-water, the resistive component of the response will be much greater than the reactive component; conversely, for ferrous metals and soil containing iron, the reactive component is larger than the resistive component. For a given, highly conductive non-ferrous object at a suitably high frequency, e.g., a silver dollar at 50 kHz, nearly all of the response will fall on the "x" axis. The "y" component of the response may be negligible. The ratio of the "x" component to the "y" component depends on the material of which the object is formed, the size and shape of the object, and the interrogating frequency.

[0009] The detector resolves the total frequency specific response into its Y and X components, each providing information about the target volume of ground. In frequency domain metal detectors, that information is typically the phase shift of the response with respect to the transmitted signal.

[0010] In addition to the requirement to distinguish the response from ground, it is necessary to be able to distinguish one metal object from another, i.e., to distinguish one phase shift from another. Accomplishing both of these objectives generally requires two independent methods for detecting responses that are insensitive to ground.

[0011] In one of these methods, termed "motion discrimination," the user is required to keep the transmit coil in motion. The ground is not necessarily homogeneous, but both the permeability and the conductivity of the ground are relatively constant over a limited area, so that detected signals resulting from ground are relatively slowly varying compared to signals resulting from the much more localized metal objects; the metal objects cause changes in the detected signals that are perceived by the metal detector to have a relatively high frequency. Then, high or band-pass filtering may be used to filter out the low frequency portion of the detected signals corresponding to the ground.

[0012] In the other conventional method for detecting responses that are insensitive to ground, often referred to as "ground balancing," a location on the ground is selected for calibrating the detector, and it is determined how to linearly combine the X and Y components of the response so that it is zero, or put another way, it is determined how much to rotate the X and Y coordinate system to align it with the phase angle of the ground so that, at the phase angle of the ground, the response is null. In practice, this can be achieved by varying the phase angles of respective synchronous demodulators so that the demodulators are insensitive to components with a phase equal to the phase angle of the ground.

[0013] More recently, metal detectors have been provided that employ two interrogating frequencies, so that four response components may be obtained as described above.
A lower frequency is provided that is particularly suited for
detecting larger objects, especially those of good conductors
like copper or silver, and a higher frequency is provided that
is more suited for detecting smaller objects and objects that
are composed of metals which are relatively poor conduc-
tors. The user of such a detector may select between the two
frequencies depending on the type of object that the user is
searching for.

[0014] To ground balance dual frequency detectors,
Candy, U.S. Pat. No. 4,942,360, proposes forming various
linear combinations of the four X and Y components. For
example, to null the response for reactive soil, the '360
Patent proposes among other things forming a linear com-
bination of the reactive components for the two frequencies.
The use of two interrogation frequencies is apparently to
provide for ground balancing both salt water and ferritic
ground. Motion discrimination would still be required to
provide an independent means of measuring phase shift
independent of the ground.

[0015] Other attempts at dual frequency discrimination
have not been successful. For example, one method in use
uses a ratio of the Y terms to identify targets. However, these
signals are not free of the effects of ground which severely
compromises the performance of the method. A similar
method has been used to rotate the Y axes as needed to
balance the ground, and the ratio of the rotated values of Y
is used to identify targets. However, a significant error is
introduced by the rotation. In addition, it is a problem in all
of these methods that ferrous and non-ferrous metals can be
confused with one another, and it is often desired to be able
to discern that a metal object is ferrous so that the user can
decide to expend no further effort to uncover the object.

[0016] Motion discrimination has the obvious disadvan-
tage that it is demanding of the user in terms of both effort
and skill. It may also result in ambiguities where there are
multiple metal objects in the target volume. Accordingly,
there is a need for a metal detector employing static dis-
crimination that permits discriminating between metal
objects and ground, and between ferrous and non-ferrous
metal objects without requiring that the search coil of the
metal detector be in motion.

SUMMARY OF THE INVENTION

[0017] Disclosed is a metal detector employing static
discrimination. Within the scope of the invention, there is a
method and apparatus for characterizing a metal object. The
metal object is interrogated with a first sinusoidal frequency
component at a first frequency and a second sinusoidal
frequency component at a second frequency, the first and
second frequencies being distinct from one another. First
and second response frequency components corresponding
to the first and second frequency components are deter-
mined. The first and second response frequency components
are adjusted with information obtained from the third and
fourth response frequency components so as to cancel the
effect of the ground.

[0019] Also within the scope of the invention is a method
and apparatus for discriminating between ferrous and non-
ferrous metal objects. An unknown metal object is interro-
gated with a first sinusoidal frequency component at a first
frequency, a second sinusoidal frequency component at a
second frequency, and a third sinusoidal frequency compo-
nent at a third frequency, the first, second and third frequen-
cies being distinct from one another. First, second and third
response frequency components corresponding to the first,
second and third frequency components are determined. A
first phase shift from the first and second response frequency
components is determined corresponding to changing inter-
rogation from said first frequency to said second frequency,
and a second phase shift from one of the first and second
response frequency components and the third response fre-
quency component is determined corresponding, respec-
tively, to changing interrogation from one of said first and
second frequencies to said third frequency. The metal object
is characterized as being ferrous or non-ferrous by use of the
first phase shift and the second phase shift.

[0020] Preferably, the method and apparatus further com-
pare the first and second phase shifts with corresponding
reference phase shifts for known metal objects including at
least one ferrous metal object and at least one non-ferrous
metal object.

[0021] Therefore, it is an object of the present invention
to provide a novel and improved metal detector.

[0022] It is another object of the present invention to
provide a metal detector providing improved discrimination
between metal objects and ground.

[0023] It is another object of the present invention to
provide a metal detector providing improved discrimination
between ferrous and non-ferrous metal objects.

[0024] It is still another object of the invention to provide
a metal detector that employs static discrimination between
metal objects and ground.

[0025] It is yet another object of the present invention
to provide a metal detector that employs static discrimination
between ferrous and non-ferrous metal objects.

[0026] The foregoing and other objects, features and
advantages of the present invention will be more readily
understood upon consideration of the following detailed
description of the invention, taken in conjunction with the
following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] FIG. 1 is a pictorial/schematic view of a metal
detector.

[0028] FIG. 2 is a plot, in a Cartesian, X-Y complex plane,
of two response frequency components R1 and R2 of a
response R, and the corresponding frequency response sub-
components X1, Y1, and X2, Y2, respectively.

[0029] FIG. 3 is a plot, in a Cartesian, X-Y complex plane,
of a vector response to interrogation of a metal object buried
in ground at a single frequency.
Fig. 4 is a plot, in a Cartesian, X-Y complex plane, of vector responses to interrogation of a metal object buried in ground at two frequencies, illustrating a “G-ratio” method according to the present invention.

Detailed Description of a Preferred Embodiment

Referring to Fig. 1, a metal detector 10 is shown. The metal detector 10 is particularly adapted for hand-held use, such as by hobbyists, however, this is not essential to the context of the present invention. The detector is used to search for metal objects 9 in a target volume 11 that is typically ground but may be any volume. Since the detector is typically used outdoors to search for metal objects away from independent sources of power, the detector typically incorporates a battery 20 to power the detector, though the detector 10 may be used with any power source.

The metal detector 10 includes an interrogating portion, a receiving portion, and a processing portion. The interrogating and receiving portion share a search head 12. The interrogating portion comprises a signal generator 14 and the receiving portion comprises a sampling circuit 16. The search head is maintained in close proximity with the ground 11. The signal generator 14 generates interrogating signals for producing eddy currents in the metal objects 9. In an induction balance metal detector, the interrogating signals include one or more sinusoidal signal components having discrete frequencies. The components can be produced as discrete sinusoidal signals, or be the result of filtering any substantially continuous signal from which the sinusoidal signal components can be Fourier identified. In a preferred embodiment of the invention, a square wave is produced having a plurality of Fourier components from which two or more interrogating signals can be identified in the range of about 3 kHz to about 15 kHz. The interrogating signals are transmitted to the metal objects through the search head 12, particularly, a transmit coil 22 therein. Eddy currents are produced in the target in response to the interrogating signals.

The eddy currents induce a response “R” in the search head 12, particularly a receive coil 24 therein. The receive coil 24 is coupled to the sampling circuit 16 which samples the response R to discern sinusoidal signal components of the response (“sinusoidal response frequency components”). While the transmit and receive coil can be the same coil, it is preferable to employ at least the two separate coils 22 and 24 in a standard induction balance configuration. As a common alternative, a third coil may be used to null the effect of the transmit coil 22, wherein the coils 22 and 24 and the third coil are all concentric.

Within the processing portion of the metal detector 10, a processor or CPU 50 performs calculations as indicated herein, and predetermined data as provided herein may be provided in one or more look-up tables 52 in communication with the processor 50. The metal detector typically includes a display device 54, such as an LCD, for displaying instructions, data, and target information to the user.

Two Frequency Discrimination Method and Apparatus

A two-frequency discrimination method and apparatus according to the present invention recognizes that the responses R to two sinusoidal signal components will in general be different; however, the responses will differ in a predictable way. Turning to Fig. 2, an X-Y plot of two responses R1 and R2 from a hypothetical target volume of ground is shown, where the subscripts identify two different interrogating frequencies F1 and F2. There are no metal objects in the ground, and the purpose of obtaining the responses R1 and R2 is to determine how to modify the response R to a volume of the same or substantially the same type of ground that includes metal objects to subtract out the effect of the ground. This is accomplished by taking one of the sinusoidal response frequency components, e.g., R1, and modifying it (Rm) so that it is equal to the other response frequency component R2. While the discussion to follow is based on modifying R1, so that it is equal to R2, it applies equally to the case where R1 is modified so that it is equal to R2, and the analysis follows similarly by replacing the appropriate subscript in the expressions below. Also note that, herein, the response R is referred to as having Cartesian components X and Y, and frequency components F1 and F2, where the Cartesian components X and Y of the response define frequency sub-components X1, X2, and Y1, Y2.

Where R1 has been modified, subtracting one of the modified response frequency components Rm and the response frequency component R2 from the other subtracts the effect of the ground. Rm in this example has two response sub-components Xm and Ym as follows:

Xm=X1=Re[X1, cos(α)Y1, sin(α)] and
Ym=Y1=Re[X1, sin(α)Y1, cos(α)].

Where R*=|R|e^jθ and α is the difference in the phases of the two response components R1 and R2.

Where neither X1 nor Y1 is zero, a simpler expression for the components Rm is used herein:

Xm=X1+X2 and
Ym=Y1+Y2.

Where A=X1/X2, and B=Y1/Y2. For an ideal ferric ground, the response R, and therefore its X and Y components, does not change with frequency, and A=B=1. However, in general, the ground is not purely ferric, and a ground canceling operation is thereby defined as:

Xground canceling=Xm=A(X1-Y2) and
Yground canceling=Ym=(B(Y1-Y2).

When the detector is used to discern a metal object that is present in the ground, the detector receives a generalized response R which is the vector sum of a contribution Robject (with components Xobject and Yobject) to the response R that is due to the metal object and a contribution Rground (with components Xground and Yground) to the response R that is due to the ground:

X=Xground+Xobject and
Y=Yground+Yobject.

Applying the ground canceling operation described above to the generalized response R provides:

Xground canceling=AX2+Xobject and
Yground canceling=BY2+Yobject.
[0043] which reduces to:
\[X_{\text{ground cancel}} = A \times X_{\text{target}} \times X_{\text{target}} \]
and
\[Y_{\text{ground cancel}} = B \times Y_{\text{target}} \times Y_{\text{target}} \]
Equation 2

[0044] If the ground is purely ferritic and A=B=1, there is no need for ground cancellation, and the result of the ground cancellation operation is simply:
\[X = X_{\text{target}} \times X_{\text{target}} \]
and
\[Y = Y_{\text{target}} \times Y_{\text{target}} \]
[0045] The phase shift \(\Phi \) in the response R received by the metal detector due to the metal object as a result of changing the frequency from \(F_1 \) to \(F_2 \) can be simply determined in that case as:
\[\Phi = \tan^{-1}\left\{ \frac{Y_{2}-Y_{1}}{X_{2}-X_{1}} \right\} \]
Eqn 3

[0046] This phase shift can be used to uniquely identify the metal object, by comparison with a standard look-up table including reference values of the phase shift for selected metal objects. The calculated phase shift can also be used to generate reference values, so that reference values for use in the context of the present invention can be obtained empirically, theoretically, or by the use of a combination of empirical and theoretical methods.

[0047] As an example of determining phase shifts or responses theoretically, the response R has in general an electric (conductive) part due to electrical conductivity and a magnetic (permeable) part due to magnetic permeability. A model of the phase shift \(\Phi \) due to the conductive part of the response which takes into account the self-inductance of the target and the resistance of the target due to the distribution of current flow as a result of the “skin effect” is:
\[\Phi = \tan^{-1}\left\{ \frac{2nF}{R_{\text{self-inductance}}} \right\} \]

[0048] where \(F \) is the interrogating frequency, \(L \) is the self-inductance, \(R_{\text{self-inductance}} \) is the effective resistance at DC, and \(K \) is a proportionality constant characteristic of the object. The magnitude of the received signal is a complicated function of, among other things, the size and shape of the transmit coil, target size and shape, and interrogating distance. However, a normalized magnitude of the conductive part of the response, for a given target and configuration of the transmit and receive coils, is proportional to the target’s inductive reactance divided by its total impedance:
\[\frac{2nF}{R_{\text{self-inductance}}} \]

[0049] The permissive part of the response is due to the alignment of magnetic domains in the target with the applied magnetic field that results from interrogating signals. As mentioned above, the ideal ferromagnetic response is independent of frequency; however, in real materials, there is hysteresis that results in phase lag, and the phase lag increases as the frequency increases, and this can be calculated as well.

[0050] While for a metal object in pure ferrite ground, in which A=B=1, Equation 3 indicates that the phase shift \(\Phi \) in the response \(R \) between the two frequencies \(F_1 \) and \(F_2 \) is straightforwardly determined, essentially so that no ground cancellation is required, it is recognized that it remains a problem to identify the metal object from the phase shift measured in the presence of real ground in which A and B are not equal to 1. Particularly, Equation 2 indicates that the ground cancellation operation generally “skews” the determination of the phase shift \(\Phi \) attributable to the metal object.

[0051] To account for this skew, according to the invention, a preliminary look-up table is constructed that permits predicting how the phase and magnitude of any target will change from one interrogating frequency to another:
\[X_{2} = C \times X_{1} \]
and
\[Y_{2} = D \times Y_{1} \]
Eqn 4

[0052] where C and D are equivalent to the aforementioned A and B constants determined for the ground, that may be determined theoretically such as discussed above, or experimentally using real targets and interpolating where needed.

[0053] The balance of a preferred two-frequency discrimination method according to the invention is described by use of a specific example. For \(F_1 \), 3280 kHz and \(F_2 \), 13120 kHz, the following relative magnitude (RI) and phase (\(\delta \)) with respect to an interrogating signal (along with the equivalent Cartesian coordinates X and Y) at each of the two frequencies \(F_1 \) and \(F_2 \) resulting from interrogating several representative metal targets has been determined as provided below:

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>(R_3)</td>
</tr>
<tr>
<td>cloudbuster</td>
</tr>
<tr>
<td>cloudbuster</td>
</tr>
<tr>
<td>Zn penny</td>
</tr>
<tr>
<td>pulltab</td>
</tr>
<tr>
<td>nickel</td>
</tr>
<tr>
<td>cigarette foil</td>
</tr>
</tbody>
</table>

[0054] Using the data of Table 1, a preliminary table can be constructed relating the phase \(\delta \) (phase response at \(F_2 \) relative to the interrogating signal) and the constants C and D of Equation 4 such as shown below:

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta)</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0.628</td>
</tr>
<tr>
<td>0.110</td>
</tr>
<tr>
<td>44.891</td>
</tr>
<tr>
<td>0.389</td>
</tr>
<tr>
<td>0.654</td>
</tr>
<tr>
<td>0.967</td>
</tr>
</tbody>
</table>

[0055] The preliminary Table 2 can be constructed to any desired resolution, and need only be constructed once for given frequencies \(F_1 \) and \(F_2 \). Table 2 can be constructed theoretically as well as constructed from empirical data such as discussed above, and interpolation may be used where desired.

[0056] Finally, given A and B, a phase shift \(\Phi_{a-b} \) in the response R of the metal detector to a metal object in generalized ground due to changing the frequency from \(F_1 \) to \(F_2 \) can be determined from the relationship:
\[\Phi_{a-b} = \tan^{-1}\left\{ \frac{Y_{2} \times (B-D)}{X_{2} \times (A-C)} \right\} \]
Eqn 5

[0057] The metal detector is preferably calibrated for the ground over which it is to be used and may need to be
recalibrated if there is a change in the ground that is judged or determined to be significant. For exemplary purposes the following data, typical of ferromagnetic ground with a slightly conductive characteristic, can be assumed as a result of calibrating the metal detector with respect to the ground:

<table>
<thead>
<tr>
<th>TABLE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{\text{ground}} = 2.2$</td>
</tr>
<tr>
<td>$X_{\text{ground}} = 2.0$</td>
</tr>
</tbody>
</table>

[0058] In this example, the coefficients $A = X_1 / X_2$, and $B = Y_1 / Y_2$ are therefore:

\[
A = 3.1; \quad B = 0.8
\]

[0059] Another table can then be constructed using the data from the preliminary Table 2 and the relation of Equation 5 to relate θ_3 and Φ_{1-2} for, in this example, a change in frequency from F_1 to F_2:

<table>
<thead>
<tr>
<th>TABLE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_3</td>
</tr>
<tr>
<td>(eig. foil)</td>
</tr>
<tr>
<td>(nickel (coin))</td>
</tr>
<tr>
<td>(Zn penny)</td>
</tr>
<tr>
<td>(Zn dime)</td>
</tr>
<tr>
<td>(Zn dollar)</td>
</tr>
</tbody>
</table>

[0060] Table 4 generally must be constructed each time the detector is recalibrated for the effect of the ground. The data of Table 4 can also be determined on theoretical grounds. However the data are determined, they are incorporated in or otherwise made available to the metal detector, such as by a wireless data link to a remote database.

[0061] The data may be used by the metal detector to identify an unknown metal object that, in this example, is one of either a clad dollar, clad dime, zinc penny pulltab, nickel coin, or cigarette foil. This is accomplished by interrogating a target volume of ground 9 that is the same or substantially the same as the volume of ground used to obtain the coefficients A and B, except that the ground contains at least one of these objects. A total response R is obtained at the same frequencies F_1 and F_2 used to generate Tables 1-4. That response R is the vector sum of a contribution R_{object} (with components X_{object} and Y_{object}) to the response R that is due to the metal object and a contribution R_{ground} (with components X_{ground} and Y_{ground}) to the response R that is due to the ground.

[0062] To illustrate use of Table 4, it is assumed for convenience that the detector interrogates a target volume of ground 9 that includes a zinc penny and that the detector in fact measures the same data that were previously determined for the zinc penny in Table 1:

<table>
<thead>
<tr>
<th>TABLE 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{\text{ground}} = 0.368$</td>
</tr>
<tr>
<td>$X_{\text{penny}} = 0.945$</td>
</tr>
</tbody>
</table>

[0063] It is further assumed for convenience that the detector is being used over the type of ground for which it has been calibrated and the ground is either reasonably homogeneous or the detector has been recalibrated, so that the same ground signal sub-components X_{ground}, Y_{ground}, and Y_{ground} given in Table 3 would actually be received by the metal detector when interrogating the target and therefore would be superposed with the response sub-components X_{object}, Y_{object}, and Y_{object} of Table 5 to give components X and Y of a total, actual response R of the detector to the target at the two frequencies F_1 and F_2:

$X_1 = 1.852, Y_1 = 0.558$ \hspace{1cm} $X_2 = 1.055, Y_2 = 0.449$

[0064] Using the coefficients $A = X_1 / X_2$, and $B = Y_1 / Y_2$, a ground cancellation operation is performed as described in Equation 1:

$X_{\text{ground cancelled}} = A X_{\text{ground}} = 0.671$; \hspace{1cm} $Y_{\text{ground cancelled}} = B Y_{\text{ground}} = 0.199$.

[0065] Then, using Equation 5 to calculate Φ_{1-2} provides:

$\Phi_{1-2} = -1.059 / 0.671 = -16.52$ deg.

[0066] Finally, comparing with Table 4, a Φ_{1-2} of -16.52 degrees corresponds most closely to a θ_3 of 20 degrees, which identifies the zinc penny.

[0067] It is an outstanding advantage of the two-frequency discrimination method and apparatus that two interrogation frequencies may be used to discriminate between different metal objects and ground without the need for motion discrimination. Alternatively, the two-frequency method and apparatus can employ motion discrimination to provide improvements in depth and accuracy over what can be achieved by the use of motion discrimination alone.

[0068] It should be understood that the two-frequency discrimination method and apparatus does not require identifying any particular metal object, and therefore does not require comparisons with reference data for known metal objects. In many instances, such as where the metal object is a type of object that is not anticipated, typically because it is rare or unusual, it may be advantageous simply to measure the response of the metal object to interrogation at two frequencies, determine the difference vector and report any desired parameter that characterizes the difference vector as being indicative of the metal object whether it is a known metal object or not.

[0069] Three Frequency Discrimination Method and Apparatus

[0070] As a result of their conductivity, iron objects will "mimic" non-iron objects in the two-frequency discrimination method because the ferromagnetic contribution to the response R of the metal detector from the iron object is nullled along with the effect of ferritic ground. Since common iron trash may assume almost any size and shape, it is often necessary to be able to distinguish ferrous metal...
objects from non-ferrous metal objects and the three-frequency discrimination employs an additional frequency to achieve this purpose.

[0071] A three-frequency discrimination method and apparatus according to the invention recognizes that, unlike the case for ferritic ground, the ferromagnetic component of the metal detector’s response R to a target volume of ground containing ferrous metal objects does not remain constant with changes in frequency, due to weakening of the field produced in the interior of the object resulting from the secondary field produced by induced eddy currents flowing at or near the surface of the metal object. Moreover, for the same reason, the change in magnitude and phase of the metal detector’s response to a ferrous metal object does not change with frequency in the same way as does the response to a non-ferrous metal object. That is, the coefficients C and D employed in the two-frequency discrimination method to predict the phase change resulting from a change in frequency from F₁ to F₂ do not apply. Therefore, while the two-frequency method cannot distinguish between ferrous and non-ferrous metal objects, use of an additional frequency can resolve the ambiguity.

[0072] According to the method, a version of Table 4 may be constructed for three-frequencies F₁, F₂, and F₃ and two phase shifts Φ₁₂ and Φ₂₃, where Φ₁₂ is the phase shift in the response R of the metal detector due to changing the interrogating frequency from F₁ to F₂, and Φ₂₃ is the phase shift in the response R of the metal detector due to changing the frequency from F₂ to F₃. Both Φ₁₂ and Φ₂₃ may be determined according to the two-frequency method discussed above (see resulting Table 4) in the general case where the ground in which the metal object is disposed is not purely ferrite.

[0073] Table 6 below considers the phase response of both ferrous and non-ferrous metal objects with respect to the three frequencies F₁=3280 kHz, F₂=13120 kHz, and F₃=52480 kHz in the simple case where the ground is assumed to be purely ferrite (A=B=1) and is exemplary:

<table>
<thead>
<tr>
<th>Object</th>
<th>Φ₁₂</th>
<th>Φ₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>steel ball</td>
<td>16.22</td>
<td>1.77</td>
</tr>
<tr>
<td>large bolt</td>
<td>-37.76</td>
<td>-46.45</td>
</tr>
<tr>
<td>gutter nail</td>
<td>-35.00</td>
<td>-47.66</td>
</tr>
<tr>
<td>clad dime</td>
<td>-33.99</td>
<td>-60.30</td>
</tr>
<tr>
<td>Zn penny</td>
<td>-10.63</td>
<td>-50.91</td>
</tr>
<tr>
<td>pull tab</td>
<td>34.72</td>
<td>-20.60</td>
</tr>
<tr>
<td>nickel (coin)</td>
<td>39.92</td>
<td>-15.30</td>
</tr>
<tr>
<td>cig. foil</td>
<td>71.57</td>
<td>29.56</td>
</tr>
</tbody>
</table>

[0074] If only the phase shift Φ₁₂ is considered, such as in a two-frequency discrimination method, the ferrous bolt, at Φ₁₂=37.76, the ferrous gutter nail, at Φ₁₂=35.00, and the non-ferrous clad dime, at Φ₁₂=33.99, could each be confused with the others. However, the corresponding phase shifts Φ₂₃ for the ferrous objects and the dime differ. Therefore, an ambiguity between a ferrous and a non-ferrous metal object resulting from the use of a two-frequency discrimination method is resolved by use of the third frequency F₃. The ambiguity, in this example, between the bolt and nail remains unresolved, but a failure of the method to discriminate between similarly ferrous metal objects having similar size and shape is typically unimportant to the hobbyist or collector, as it is often desired simply to discern that the metal object is ferrous so that it can be rejected. It may be noted in this regard that the two-frequency method in this example does provide for ample discrimination between the steel ball, on the one hand, and the bolt and nail, on the other.

[0075] While the three-frequency method and apparatus is preferably based on the two-frequency method and apparatus described above, it is not essential to distinguishing between ferrous and non-ferrous metal objects to employ ground cancellation. Moreover, either of the two or three-frequency discrimination methods and apparatus may be employed in conjunction with other methods to improve the resolution, accuracy, and depth of metal detection, especially in ground. For example, while combining conventional motion discrimination with techniques with prior art ground balancing techniques is not particularly advantageous, the two and three frequency methods and apparatus according to the present invention may be used with motion discrimination, e.g., by 10 Hz bandpass filtering the response R, to provide outstanding benefits.

[0076] G-Ratio Method

[0077] A general problem is illustrated in FIG. 3. A metal object buried in the ground is interrogated at a frequency F. The metal detector receives a response R that is the vector sum of a ground response vector Gnd and a response vector O due to the object. A “G” axis may be constructed without knowing the magnitude of the vector Gnd, by varying the angle α of demodulation of the response to a calibrating volume of ground until the ground is “nulled,” and using this angle of demodulation during interrogation as is standard practice in the metal detector art. The G axis is perpendicular to the ground response vector Gnd and is insensitive to the ground because the ground response projected on the G axis is zero.

[0078] With the response R and the orientation α of the G axis known, the “ground balanced” component of R along the G axis, R₂₃, can be determined. However, the phase angle θ corresponding to the phase shift due to the metal object cannot be determined, fundamentally because there is no way to distinguish between the vectors Gnd and O, with phase angle θ, and the vectors Gnd’ and O’, with phase angle θ’. Since metal objects are conventionally identified by their characteristic phase angles θ, the metal object in this example cannot be identified.

[0079] To solve this problem, a particular embodiment of the two-frequency and three frequency methods discussed above referred to as the “G-ratio” method is described in connection with FIG. 4. Hypothetical target responses R₁ and R₂ are shown as a result of interrogating the target at two frequencies F₁ and F₂, respectively, along with corresponding hypothetical ground responses Gnd, and Gnd’, at the two frequencies. Axes G₁’ and G₂’ may be constructed as ground balanced axes because they are perpendicular to the ground response vectors.

[0080] The angular orientation of the response vectors R and the G axes are defined by angles θ and α, respectively. Particularly, the response vector R₁ is oriented at an angle θ₁, the response vector R₂ is oriented at an angle θ₂, the G vector G₁ is oriented at an angle α₁, and the G vector G₂ is oriented at an angle α₂. Accordingly, quantities A and B can be defined such that:
A = R₁ projected onto G₄ × R₁ cos(α₁ - θ₁); and
B = R₂ projected onto G₄ × R₂ cos(α₂ - θ₂).

A “G-ratio” may be defined as:

\[G \text{-ratio} = \frac{\text{relative magnitudes of the vectors } R₂ \text{ and } R₁}{\text{the angles } \alpha_i \text{ are determined in operation of the metal detector. Then, equation 6 may be solved for each value of } \theta \text{ in the table, to obtain a calculated G-ratio for each metal object represented in the table.}}

In addition, a measured G-ratio may be obtained in operation of the detector by ground balancing the detector, noting the angles for which ground balancing is accomplished for the two frequencies, and demodulating the responses at these angles so that the responses are actually projected onto the G-axes, as is standard methodology in the art. The ratio of these responses equals the G-ratio, and this measured G-ratio can then be compared with the calculated G-ratios indicated above to find a best match that identifies the metal object.

As indicated in the discussion above regarding the three-frequency method, ferrous targets will mimic nonferrous targets with this two-frequency embodiment of the G-ratio method. To provide ferrous discrimination, a third frequency F₃ can be employed, where the two-frequency G-ratio method described above is used at two distinct pairs of frequencies, e.g., F₁ and F₂, and F₁ and F₃. According to the invention, if the G-ratio measured at the first pair of frequencies F₁ and F₂ does not agree with the G-ratio measured at the second pair of frequencies F₁ and F₃, the target is identified as being ferrous, and if the G-ratios do agree, then the target is identified as being non-ferrous.

It is to be recognized that, while a particular metal detector employing static discrimination has been shown and described as preferred, other configurations and methods could be utilized, in addition to those already mentioned, without departing from the principles of the invention. For example, while described in the context of an induction balance, continuous-wave or frequency domain metal detector, time-domain or pulse induction techniques may be employed with suitable modification without departing from the principles of the invention.

The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention in the use of such terms and expressions to exclude equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

1. A method for characterizing a metal object, comprising the steps of:

interrogating the ground with a third sinusoidal frequency component at a second frequency, said first and second frequencies being distinct from one another;

determining first and second response frequency components corresponding to said first and second frequency components;

characterizing the metal object by comparing said first response frequency component with said second response frequency component.

2. The method of claim 1, wherein said comparing is by forming a ratio of said first and second response frequency components.

3. The method of claim 2, further comprising comparing said ratio to reference values for said ratio determined for a plurality of reference metal objects, to identify the metal object.

4. The method of claim 1, for further discriminating between the metal object and ground, the method further comprising:

interrogating the ground with a third sinusoidal frequency component at said first frequency and a fourth sinusoidal frequency component at said second frequency;

determining third and fourth response frequency components corresponding to said third and fourth sinusoidal frequency components;

adjusting said first and second response frequency components with information obtained from said third and fourth response frequency components so as to cancel the effect of the ground.

5. The method of claim 4, wherein said response frequency components each have W and Z response frequency sub-components where W and Z define real and imaginary axes of a two-dimensional coordinate system, wherein the method further comprises:

determining an A factor for multiplying the W response sub-component for the second sinusoidal response frequency component so that it equals the W response sub-component for the first sinusoidal response frequency component;

determining a B factor for multiplying the Z response sub-component for the second sinusoidal response frequency component so that it equals the Z response sub-component for the first sinusoidal response frequency component;

determining a C factor for multiplying the W response sub-component for the fourth sinusoidal response frequency component so that it equals the W response sub-component for the third sinusoidal response frequency component;

determining a D factor for multiplying the Z response sub-component for the fourth sinusoidal response frequency component so that it equals the Z response sub-component for the third sinusoidal response frequency component; and

computing the arctangent of the ratio defined by the quantity (B-D) multiplied by the Z response sub-component for the second sinusoidal response frequency component divided by the quantity (A-C) mul-
tplied by the W response sub-component for the second sinusoidal response frequency component.

6. A method for discriminating between ferrous and non-ferrous metal objects, comprising the steps of:

interrogating an unknown metal object with a first sinusoidal frequency component at a first frequency, a second sinusoidal frequency component at a second frequency, and a third sinusoidal frequency component at a third frequency, said first, second and third frequencies being distinct from one another;

determining first, second and third response frequency components corresponding to said first, second and third frequency components;

determining a first phase shift from said first and second response frequency components corresponding to changing interrogation from said first frequency to said second frequency;

determining a second phase shift from one of said first and second response frequency components and said third response frequency component corresponding, respectively, to changing interrogation from one of said first and second frequencies to said third frequency; and

characterizing the metal object as being ferrous or non-ferrous by use of the first phase shift and the second phase shift.

7. The method of claim 6, further comprising comparing the first and second phase shifts with corresponding reference phase shifts for known metal objects including at least one ferrous metal object and at least one non-ferrous metal object.

8. The method of claim 7, wherein, if the first phase shift matches a first corresponding reference phase shift for a non-ferrous metal object, the method further comprises checking whether the second phase shift also matches a second corresponding phase shift for the non-ferrous metal object and determining that the unknown metal object is non-ferrous if so.

9. The method of claim 7, wherein, if the first phase shift matches a first corresponding reference phase shift for a ferrous metal object, the method further comprises checking whether the second phase shift also matches a second corresponding phase shift for the ferrous metal object and determining that the unknown metal object is ferrous if so.

10. The method of claim 7, wherein, if the first phase shift matches a first corresponding reference phase shift for both ferrous and non-ferrous metal objects, the method further comprises comparing the second phase shift with second corresponding reference phase shifts for the same ferrous and non-ferrous metal objects and thereby resolving the ambiguity.

11. The method of claim 7, wherein the unknown metal object is in proximity with ground, and the method further comprising:

interrogating the ground with a fourth sinusoidal frequency component at said first frequency and a fifth sinusoidal frequency component at said second frequency,

determining fourth and fifth response frequency components corresponding to said fourth and fifth frequency components; and

adjusting said first and second response frequency components with information obtained from said fourth and fifth response frequency components so as to cancel the effect of the ground on the first phase shift.

12. The method of claim 11, wherein said response frequency components each have W and Z response frequency sub-components where W and Z define real and imaginary axes of a two-dimensional coordinate system, wherein the method further comprises:

determining a A factor for multiplying the W response sub-component for the second sinusoidal response frequency component so that it equals the W response sub-component for the first sinusoidal response frequency component;

determining a B factor for multiplying the Z response sub-component for the second sinusoidal response frequency component so that it equals the Z response sub-component for the first sinusoidal response frequency component;

determining a C factor for multiplying the W response sub-component for the fourth sinusoidal response frequency component so that it equals the W response sub-component for the third sinusoidal response frequency component;

determining a D factor for multiplying the Z response sub-component for the fourth sinusoidal response frequency component so that it equals the Z response sub-component for the third sinusoidal response frequency component; and

computing the arctangent of the ratio defined by the quantity (B-D) multiplied by the Z response sub-component for the second sinusoidal response frequency component divided by the quantity (A-C) multiplied by the W response sub-component for the second sinusoidal response frequency component.

13. The method of claim 12, further comprising interrogating the ground with a sixth sinusoidal frequency component at said third frequency, determining a sixth response frequency component corresponding to said sixth frequency components, and adjusting said first, second and third response frequency components with information obtained from said fourth, fifth and sixth response frequency components so as to cancel the effect of the ground on the first and second phase shifts.

14. An apparatus for discriminating between a metal object and ground, comprising:

an interrogating portion for interrogating the metal object with a first sinusoidal frequency component at a first frequency and a second sinusoidal frequency component at a second frequency, said first and second frequencies being distinct from one another;

a sampling portion for determining first and second response frequency components corresponding to said first and second frequency components; and

a processing portion for characterizing the metal object by comparing said first response frequency component with said second response frequency component.

15. The apparatus of claim 14, wherein said processing portion is further adapted so that said comparing is by forming a ratio of said first and second response frequency components.
16. The apparatus of claim 15, wherein said processing portion is further adapted to compare said ratio to reference values for said ratio determined for a plurality of reference metal objects, to identify the metal object.

17. The apparatus of claim 14, for further discriminating between the metal object and ground, wherein said interrogating portion is further adapted to interrogate the ground with a third sinusoidal frequency component at said first frequency and a fourth sinusoidal frequency component at said second frequency, wherein said sampling portion is further adapted to determine third and fourth response frequency components corresponding to said third and fourth sinusoidal frequency components, and wherein said processing portion is further adapted to adjust said first and second response frequency components with information obtained from said third and fourth response frequency components so as to cancel the effect of the ground.

18. The apparatus of claim 17, wherein said response frequency components each have W and Z response frequency sub-components where W and Z define real and imaginary axes of a two-dimensional coordinate system, wherein said processing portion is further adapted to determine an A factor for multiplying the W response sub-component for the second sinusoidal response frequency component so that it equals the W response sub-component for the first sinusoidal response frequency component, determine a B factor for multiplying the Z response sub-component for the second sinusoidal response frequency component so that it equals the Z response sub-component for the first sinusoidal response frequency component, determine a C factor for multiplying the W response sub-component for the fourth sinusoidal response frequency component so that it equals the W response sub-component for the third sinusoidal response frequency component, determine a D factor for multiplying the Z response sub-component for the fourth sinusoidal response frequency component so that it equals the Z response sub-component for the third sinusoidal response frequency component, and compute the arctangent of the ratio defined by the quantity (B-D) multiplied by the Z response sub-component for the second sinusoidal response frequency component divided by the quantity (A-C) multiplied by the W response sub-component for the second sinusoidal response frequency component.

19. An apparatus for discriminating between ferrous and non-ferrous metal objects, comprising:

an interrogating portion for interrogating an unknown metal object with a first sinusoidal frequency component at a first frequency, a second sinusoidal frequency component at a second frequency, and a third sinusoidal frequency component at a third frequency, said first, second and third frequencies being distinct from one another;

a sampling portion for determining first, second and third response frequency components corresponding to said first, second and third frequency components; and

a processing portion for determining a first phase shift from said first and second response frequency components corresponding to changing interrogation from said first frequency to said second frequency, determining a second phase shift from one of said first and second response frequency components and said third response frequency component corresponding, respectively, to changing interrogation from one of said first and second frequencies to said third frequency, and characterizing the metal object as being ferrous or non-ferrous by use of the first phase shift and the second phase shift.

20. The apparatus of claim 19, wherein said processing portion is further adapted to compare the first and second phase shifts with corresponding reference phase shifts for known metal objects including at least one ferrous metal object and at least one non-ferrous metal object.

21. The apparatus of claim 20, wherein said processing portion is further adapted, if the first phase shift matches a first corresponding reference phase shift for a non-ferrous metal object, to check whether the second phase shift also matches a second corresponding phase shift for the non-ferrous metal object and determine that the unknown metal object is non-ferrous if so.

22. The apparatus of claim 20, wherein said processing portion is further adapted, if the first phase shift matches a first corresponding reference phase shift for a ferrous metal object, to check whether the second phase shift also matches a second corresponding phase shift for the ferrous-metal object and determine that the unknown metal object is ferrous if so.

23. The apparatus of claim 20, wherein said processing portion is further adapted, if the first phase shift matches a first corresponding reference phase shift for both ferrous and non-ferrous metal objects, to compare the second phase shift with second corresponding reference phase shifts for the same ferrous and non-ferrous metal objects and thereby resolve the ambiguity.

24. The apparatus of claim 20, wherein the unknown metal object is in proximity with ground, wherein said interrogating portion is further adapted to interrogate the ground with a fourth sinusoidal frequency component at said first frequency and a fifth sinusoidal frequency component at said second frequency, wherein said sampling portion is further adapted to determine fourth and fifth frequency components corresponding to said fourth and fifth frequency components, and wherein said processing portion is further adapted to adjust said first and second response frequency components with information obtained from said fourth and fifth frequency components so as to cancel the effect of the ground on the first phase shift.

25. The apparatus of claim 24, wherein said response frequency components each have W and Z response frequency sub-components where W and Z define real and imaginary axes of a two-dimensional coordinate system, wherein said processing portion is further adapted to determine an A factor for multiplying the W response sub-component for the second sinusoidal response frequency component so that it equals the W response sub-component for the first sinusoidal response frequency component, determine a B factor for multiplying the Z response sub-component for the second sinusoidal response frequency component so that it equals the Z response sub-component for the first sinusoidal response frequency component, determine a C factor for multiplying the W response sub-component for the fourth sinusoidal response frequency component so that it equals the W response sub-component for the third sinusoidal response frequency component, determine a D factor for multiplying the Z response sub-component for the fourth sinusoidal response frequency component so that it equals the Z response sub-component for the third sinusoidal response frequency component, and compute the arctangent of the ratio defined by the quantity (B-D) multiplied by the Z response sub-component for the second sinusoidal response frequency component divided by the quantity (A-C) multiplied by the W response sub-component for the second sinusoidal response frequency component.
of the ratio defined by the quantity (B-D) multiplied by the Z response sub-component for the second sinusoidal response frequency component divided by the quantity (A-C) multiplied by the W response sub-component for the second sinusoidal response frequency component.

26. The apparatus of claim 25, wherein said interrogating portion is further adapted to interrogate the ground with a sixth sinusoidal frequency component at said third frequency, wherein said sampling portion is further adapted to determine a sixth response frequency component corresponding to said sixth frequency components, and wherein said processing portion is further adapted to adjust said first, second and third response frequency components with information obtained from said fourth, fifth and sixth response frequency components so as to cancel the effect of the ground on the first and second phase shifts.